
Architecture
Strategies for
Successful SaaS
Products
Subbu Ramanathan
Head of Software Engineering, Brady Corporation

Who is this for?
Architects

🗸

Technology &
Business Leaders

🗸

Curious minds
that can absorb
high level
technical stuff

🗸

The Saas market value is predicted
to grow in 2023 to $208.1 billions

That is 17.5% over the
growth of the market in
2022

Source: Sumatosoft

https://sumatosoft.com/blog/15-market-defining-saas-trends#:~:text=The%20Saas%20market%20value%20is,always%20evolving%20IT%20market%20trends.

22% of small businesses fail in the first year

32% in the first two years
50% within five years

Enterprise Clients Are Larger

Enterprise Clients Have Low Churn

What is the main reason
hindering successful
enterprise adoption of SaaS?

SaaS sprawl

As you scale up and start
dealing with enterprise
customers, they add a new
stakeholder to your mix:
their IT departments

What are the important
concerns?

1. Security
2. Inflexible customization
3. Limited integrations
4. Release management

The most commonly
cited SaaS challenges as
revealed by Deloitte

51%
According to Gartner, the biggest challenge companies face with

SaaS is finding vendors that can meet their specific needs

Security
Authentication

Limit access.

Authentication:
SSO is NOT Social Login
SSO offers

Greater security
Compliance
Saves time
Lowers IT cost

Authentication - SSO

Authentication: MFA Using Email

Accessibility

Familiarity

Low cost

Delivery may be delayed/filtered as
spam

Email accounts are vulnerable to
hacking or phishing attacks

Authentication: MFA Using SMS

Widespread availability

Ease of use

SIM swapping vulnerability

Reliance on network connectivity

Lack of encryption

Authentication: MFA Using Authenticator

Enhanced Security

Offline functionality

Multi-account support

Device dependency

Learning curve

Security

Tenant Isolation

Create boundaries between
resources to limit any exposure to
cross-tenant access

Silo Isolation
Support challenging compliance needs

No noisy neighbor concerns

Tenant cost tracking

Limit blast radius

Scalability (# of silos to support)

Cost

Agility

Decentralized management/monitoring

Separate isolated clusters, where each tenant owns
storage and infrastructure resources

Pool Isolation

Noisy neighbor

Tenant cost tracking

Blast radius

Cost

Agility

Simplified management/monitoring

Multiple users share the same infrastructure

Bridge Model
A hybrid of silo and pool tenant isolation with
isolated and shared infrastructures

Security

On-premise Installation

Provide an option

Third party deployment tools

Containerize SaaS app using K8s

Define app with YAML manifests, K8s operators, and/or Helm

Upload to a public/private registry

Deploy

Handling DB migration/update

1. Run automatically as part of your service startup
2. Use Init containers (will run to completion before the

regular containers in your pod start)
3. Use Helm hooks. Used to decide when resources are

created during the deployment. Leverage that to run the
migration job before any resource is created/updated

Customization

Allow

Front-end customization with UI Extenders
The majority of use-cases of extending a SaaS product by end-users are UI
related — adding new components or pages.

A typical UI extension will entail:
> HTML, CSS, JavaScript, Images / fonts

Service customization with APIs

Integration

Enable

Event Based

Message Based using Service Bus
Consume messages at own rate

Messages not lost in case of
exceptions

Sequential delivery

Duplicate detection

SB Explorer to observe/investigate

Embedded iPaaS

● iPaaS supplies the infrastructure

● SaaS provider sets different types of
connections & parameters
(APIs/prebuilt connectors)

● iPaaS allows
viewing/configuring/managing the
connections

iPaaS (integration Platform As A Service) - a set of tools that enables software
companies to build reusable, configurable, native integrations and deliver them
to their customers as features of their application

Release Management

Empathize

Release Strategies

Develop and share a roadmap

Be calendar driven

Have “preview releases” in a non-prod environment

Run a regular “release readiness meeting,” where every item
of the release is discussed with customers

Implement feature toggles for major features

How do you make this worthwhile?

Questions

